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Lots of applications ...

Dynamic capacity management in data centers [Tu et al. 2013]
Power system generation/load scheduling[Lu et al. 2013]
Portfolio management [Cover 1591][Boyd et al. 2012]

Video streaming [Sen et al. 2000][Liu et al. 2008]

Network routing [Bansal et al. 2003][Kodialam et al. 2003]
Geographical load balancing [Hindman et al. 2011] [Lin et al. 2012]



In most applications, predictions are crucial
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impact online algorithm design

But we do not have a good understanding about how (imperfect) predictions




This talk: Online Convex Optimization
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Online convex optimization using predictions
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\ switching cost
convex
e.g. online tracking cost
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How do algorithms model prediction noise?

» Learning and Algorithms: Perfect lookahead model

(Near) perfect lookahead for w time steps and then adversarial } Worst case analysis
Both too optimistic and pessimistic

—

» Control and Signal Processing: Stochastic model
Assume a stochastic process and derive optimal predictor

Too sensitive to assumptions
. Average case analysis

» Systems Design: Numeric evaluation
Test predictor given historic traces

No guarantee for performance _
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Our contribution: a general and tractable
model for prediction

Key message: prediction allows



Outline

1. Background : regret and competitive ratio

OCO without prediction
OCO with worst case prediction

2. Our prediction noise model
3. Algorithm design

4. OCO with stochastic prediction noise



Two communities, two metrics

Online Learning

Regret(Alg) = sup,[Cost(Alg) - Cost(STA)]

Goal:

Online Algorithm

Competitive ratio(Alg) = supy[

Goal:

sublinear regret

Real applications want both

Cost(Alg)

Cost(OPT)

constant competitive ratio
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Guarantees without prediction

»Sublinear regret?
Yes, [Kivinen & Vempala 2002] [Bansal et al. 2003]

[Zinkevich 2003] [Hazan et al. 2007] [Lin et al. 2012] ...

» Constant CR?
Yes, but only for scalar case

[Blum et al. 1992] [Borodin et al. 1992][Blum & Burch 2000]
[Lin et al. 2011][Lin et al. 2012] ...

»Sublinear regret and constant CR?
Not even in scalar case! [Andrew et al. 2013]
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Guarantees with prediction

15t cut, perfect lookahead:
Vejr = Ye foranytimet <t +w

»Sublinear regret?
Yes, [Kivinen & Vempala 2002] [Bansal et al. 2003]

[Zinkevich 2003] [Hazan et al. 2007] [Lin et al. 2012] ...
» Constant CR?

Yes in general [Lin et al. 2013]

»Sublinear regret and constant CR?
Not without a lot of prediction [Chen et al. 2015]

17



Theorem:

An online algorithm with perfect lookahead
requires unbounded lookahead window w

to simultangmusly achieve sublinear regret and
a constant co itive ratio.

w = w(1) as T grows

We may be using the wrong prediction model
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Outline

1. Background : regret and competitive ratio

OCO without prediction
OCO with worst case prediction

2. Our prediction noise model
3. Algorithm design

4. OCO with stochastic prediction noise



What do we want in a prediction noise model?

» Predictions are “refined” as time goes forward

» Predictions are more noisy as you look
further ahead

> Prediction errors can be correlated

» Should be general enough to incorporate
detailed models



A more realistic prediction noise model

t
Ve =Ye|r T Zs—r+1f(t —s)e(s)
R -

4
Realization thpt algorithmMstrying to track

prediction error

Prediction for time t given to
algorithm at time 7

21



A more realistic prediction noise model

Per-step noise

t
yt:yt|r+z f(t—S
S=1+1

How much uncertainty is there one step ahead?
Ve — Yeje—1 = f(0)e(t)
where e(t) are white, mean zero (unbiased)
and £(0)=1, Ee(t)e(t)! =R,
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A more realistic prediction noise model

We|ght|ng factor

Ve = Vt|t +z . ()

How important is the noise at time t — s
for the prediction of t?
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A more realistic prediction noise model

t
Ye = Vt|z +ZS:T+1f(t —s)e(s)

_/

Y
prediction error

Predictions are “refined” as time goes forward

Predictions are more noisy as you look further ahead
t—7—-1

=02 Y I
s=0

Prediction errors can be correlated
Form of errors matches many classic models

E ||3’t - }’t|r|
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A more realistic prediction noise model

t
Ye = Vt|z +ZS:T+1f(t —s)e(s)

_/

Y
prediction error

This form of prediction error matches what occurs in
* Prediction of a wide-sense stationary process using a \Weiner filter
* Prediction of a linear dynamical system using a Kalman filter
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A more realistic prediction noise model

t
Ve =Ye|r T 252T+1f(t —s)e(s)

Key observation: No assumption about y; or
how predictions are made

mmm) Allows adversarial analysis using stochastic prediction noise

Regret(Alg) = sup E, cost(Alg) — cost(STA)

y
cost(Alg)
cost(Opt)

Competitive Ratio(Alg) = supE,
y
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A natural suggestion:
Model Predictive Control (MPC)

Ye+1|tr Ve42|tr = Ye+w|tlVt+w+1|tr Ye+w+2|t) =

. 1 2
= argmin Z E“ —th” +,8||xt—xt_1||1



A natural suggestion:
Model Predictive Control (MPC)

Ye+1|tr Ve+2|tr = Ye+w|tr Ve+w+1|tr Ye+w+2|t) =
YVe2|t+1 YVe+3|t+1 = Yet+w+1|t+1 Ye+w+2|t+1 Ve4w43|t+1r -+



A natural suggestion:
Model Predictive Control (MPC)

Ye+1|tr Ve+2|tr = Ye+w|tr Ve+w+1|tr Ye+w+2|t) =
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A more stable alternative:
Averaging Fixed Horizon Control (AFHC)

Yt+1|t) Yt+2|t) - Yt+w|t

_ 1 2
= argmin Z §|| —th|| +,6’||x,:—x,:_1||1



A more stable alternative:
Averaging Fixed Horizon Control (AFHC)

Yttt Ve42[tr - Ye+w |tV t+w+1|t+wr Ye+w+2|t+wr -



A more stable alternative:
Averaging Fixed Horizon Control (AFHC)

Average choices of FHC algorithms

_ 1 ow (k)
XAFHC = WZI{:l XrUc

[|3’t+1|t» Ve+2(tr = Ye+w|t) Ve+w+1|t+wr Ve+w+2[t+ws - |

Iyt+2|t+1:3’t+3|t+1: o YVe+w+ t+1»|3’t+w+2|t+w+1:Yt+w+3|t+w+1» I

w FHC algorithms < | Ve+3|e+2r Yerajezr b Verwr2je+2) Verw3|ctw+2 Yerw+aft+w+2) -]

I)’t+4|t+3» 5|t+37 e )’t+w+3|t+3:|yt+w+4|t+w+3: Vt+w+5|t+w+3

\ :
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Theorem: AFHC(w) with w = O(1) has sublinear regret
and is constant competitive (in expectation) when
cost(OPT) = Q(T),and cost(STA) = a;T — o(T).
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Theorem: AFHC(w) with w = O(1) has sublinear regret
and is constant competitive (in expectation) when
cost(OPT) = Q(T),and cost(STA) > a4T — o(T).

L—) How tight is this condition?

Theorem: Any online algorithm that chooses action independent of e(t)

2
has cost at least R;/ZH T+ o(T)

No online algorithm can do well if cost(OPT) € o(T) or
2
R1/2‘

e

cost(STA) < <

— )/)Tfor somey > 0.
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Theorem: AFHC(w) with w = O(1) has sublinear regret

and is constantgompetitive (in expectation) when
cost(OPT) 5/0Q(T), and cost(STA) = a;T — o(T).

How to choose w?

Lemma: sup E[cost(AFHC) — cost(OPT)] < V—T;

y
Cumulative prgdiosodus tors
over w timesteps

We can compute the optimal lookahead w
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Theorem: AFHC(w) with w = O(1) has sublinear
regret and is constant competitive (in expectation)
when cost(OPT) = Q(T), and cost(STA) g T —
o(T).

How likely is large deviation from expected performance for AFHC?

¥

Theorem: When e(t) is independent, sub-Gaussian for all t, for sufficiently large u,
Ja, b, c > 0 such that

a + bt

$2
P(cost(AFHC) — cost(Opt) >t + u) < c-exp (- >

Intuition: the competitive difference of AFHC is a “smooth” function of e(t)
38



Our contribution: a general and tractable
model for prediction

Key message: prediction allows

1. Overcoming “impossibility” results for OCO with minimal structural
assumption

2. Balance between average case and worst case analysis
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